试论基于大数据的网络安全与情报分析
互联网在为人们生产生活提供便利的同时,也为人们带来了网络威胁,个人信息、企业数据和国家敏感信息很容易被泄漏或篡改,对网络安全造成不利影响。因此,技术人员需要加强对网络安全技术的研发,从整体提升网络安全水平,抵御不法分子的攻击,保障个人、企业和国家的网络信息安全,促进网络的可持续发展。
1 网络安全与情报工作的不足
在信息化程度不断加深的当下,网络安全与情报工作的不足逐渐凸显出来。互联网的普及是网络中产生了大量的结构化、半结构化及非结构化的数据信息,传统的网络安全技术难以在短时间内处理海量的数据信息,还不能长时间保留数据源,并不能全面分析网络数据信息,很容易使恶意数据信息成为“漏网之鱼”,对网络及网络用户造成不利影响。同时,互联网的发展也增加了威胁情报信息源的数量,而传统的网络情报分析技术难以将大量的威胁情报联系在一起,在关联分析和数据源检测方面存在不足,不能保障网络安全[1]。因此,对网络安全与情报工作的创新刻不容缓。
2 网络安全与情报中应用的大数据技术
2.1 大数据处理技术
在网络安全与情报工作中,需要采集并整合海量的数据信息,大数据技术在数据采集与处理方面有显著优势。大数据技术在进行数据处理与计算中,主要采用批量计算以及流式计算这两种模式。常用的数据处理技术包括以下三种:
第一,交互式数据查询技术,该技术是将HBase、Hive等数据库作为基础,实现多个数据库交互的技术,可以支持多个数据库的交互式查询,其数据查询时间可以控制在几分钟内,具有灵活直观等优势。目前常用的交互式数据查询系统有Dremel系统以及Apache Spark系统。
第二,批量数据处理技术,该技术能够批量进行数据的采集与处理,可以显著提升数据处理效率。在实际的批量数据处理技术应用中,首先将海量数据信息进行静态存储,再开展处理工作,可以显著提升数据处理的全面性和有效性。一般来说,对于相对复杂的数据信息,批量数据处理技术可以在数小时内完成,效率较高。
第三,流式数据处理技术,该技术能够开展实时数据计算与处理工作,数据处理结构的反馈效率也很高。在实际的流式数据处理技术应用中,可以直接在内存中开展数据信息的处理工作,具有延迟短和效率高等优势。
2.2 大数据分析技术
在网络安全与情报工作中,需要对海量的数据信息进行分析,大数据技术在数据分析方面有显著优势。常用的数据分析技术包括以下三种:
第一,用户行为分析技术,在企业经营管理中,如果其内外网难以分开,企业难以通过安全技术抵御黑客的攻击,这是因为企业内部存在安全隐患。用户行为分析技术可以对企业内部用户的网络行为进行分析,通过UBA技术搜集用户在网络流量及日志记录等方面的行为痕迹,以此构建用户行为基准线,将基准线和用户行为进行对比,以此找出用户存在的异常行为,从而准确识别企业内部存在的安全威胁。
第二,安全可视分析技术,该技术可以实现数据的可视化,确保管理人员直观地看到数据隐含的信息,可以为安全管理人员提供更为丰富的参考资料,为安全管理人员发现网络安全问题及黑客攻击提供便利。在实际的安全可视分析技术应用中,首先要明确网络安全管理人员的管理问题,即从哪些数据内容中分析隐含信息;再进行数据可视化处理,通过聚焦或者关联等功能,实现人机交互,完成数据隐含信息的传递。
第三,安全事件关联分析技术,在互联网越来越普及的背景下,网络安全事件逐渐增多,不同网络安全事件中存在密切联系。安全事件关联分析技术可以就网络安全事件开展关联分析,从网络安全事件的本质入手,分析网络攻击行为,位网络安全事件的妥善处理提供帮助[2]。常用的安全事件关联分析技术包括安全设备报警关联分析技术、不同领域范围的安全关联分析技术以及网络主机关联分析技术等,可以实现全面的网络威胁分析。
3 基于大数据的网络安全与情报
通过上述分析可知,大数据技术中的多项技术可以应用于网络安全与情报工作中,可以将其用于网络信息安全攻击检测、网络信息风险感知、网络情报分析及网络异常检测等方面,切实发挥出大数据技术的作用,创新网络安全与情报工作,提升其工作水平和质量。
下一篇:没有了